\(\int \frac {(a+b (c x^q)^n)^p}{x^2} \, dx\) [3051]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 17, antiderivative size = 71 \[ \int \frac {\left (a+b \left (c x^q\right )^n\right )^p}{x^2} \, dx=-\frac {\left (a+b \left (c x^q\right )^n\right )^p \left (1+\frac {b \left (c x^q\right )^n}{a}\right )^{-p} \operatorname {Hypergeometric2F1}\left (-p,-\frac {1}{n q},1-\frac {1}{n q},-\frac {b \left (c x^q\right )^n}{a}\right )}{x} \]

[Out]

-(a+b*(c*x^q)^n)^p*hypergeom([-p, -1/n/q],[1-1/n/q],-b*(c*x^q)^n/a)/x/((1+b*(c*x^q)^n/a)^p)

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 71, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.176, Rules used = {377, 372, 371} \[ \int \frac {\left (a+b \left (c x^q\right )^n\right )^p}{x^2} \, dx=-\frac {\left (a+b \left (c x^q\right )^n\right )^p \left (\frac {b \left (c x^q\right )^n}{a}+1\right )^{-p} \operatorname {Hypergeometric2F1}\left (-p,-\frac {1}{n q},1-\frac {1}{n q},-\frac {b \left (c x^q\right )^n}{a}\right )}{x} \]

[In]

Int[(a + b*(c*x^q)^n)^p/x^2,x]

[Out]

-(((a + b*(c*x^q)^n)^p*Hypergeometric2F1[-p, -(1/(n*q)), 1 - 1/(n*q), -((b*(c*x^q)^n)/a)])/(x*(1 + (b*(c*x^q)^
n)/a)^p))

Rule 371

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*((c*x)^(m + 1)/(c*(m + 1)))*Hyperg
eometric2F1[-p, (m + 1)/n, (m + 1)/n + 1, (-b)*(x^n/a)], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 372

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^IntPart[p]*((a + b*x^n)^FracPart[p]/
(1 + b*(x^n/a))^FracPart[p]), Int[(c*x)^m*(1 + b*(x^n/a))^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 377

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*((c_.)*(x_)^(q_))^(n_))^(p_.), x_Symbol] :> Subst[Int[(d*x)^m*(a + b*c^n*
x^(n*q))^p, x], x^(n*q), (c*x^q)^n/c^n] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&  !RationalQ[n]

Rubi steps \begin{align*} \text {integral}& = \text {Subst}\left (\int \frac {\left (a+b c^n x^{n q}\right )^p}{x^2} \, dx,x^{n q},c^{-n} \left (c x^q\right )^n\right ) \\ & = \text {Subst}\left (\left (\left (a+b c^n x^{n q}\right )^p \left (1+\frac {b c^n x^{n q}}{a}\right )^{-p}\right ) \int \frac {\left (1+\frac {b c^n x^{n q}}{a}\right )^p}{x^2} \, dx,x^{n q},c^{-n} \left (c x^q\right )^n\right ) \\ & = -\frac {\left (a+b \left (c x^q\right )^n\right )^p \left (1+\frac {b \left (c x^q\right )^n}{a}\right )^{-p} \, _2F_1\left (-p,-\frac {1}{n q};1-\frac {1}{n q};-\frac {b \left (c x^q\right )^n}{a}\right )}{x} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 71, normalized size of antiderivative = 1.00 \[ \int \frac {\left (a+b \left (c x^q\right )^n\right )^p}{x^2} \, dx=-\frac {\left (a+b \left (c x^q\right )^n\right )^p \left (1+\frac {b \left (c x^q\right )^n}{a}\right )^{-p} \operatorname {Hypergeometric2F1}\left (-p,-\frac {1}{n q},1-\frac {1}{n q},-\frac {b \left (c x^q\right )^n}{a}\right )}{x} \]

[In]

Integrate[(a + b*(c*x^q)^n)^p/x^2,x]

[Out]

-(((a + b*(c*x^q)^n)^p*Hypergeometric2F1[-p, -(1/(n*q)), 1 - 1/(n*q), -((b*(c*x^q)^n)/a)])/(x*(1 + (b*(c*x^q)^
n)/a)^p))

Maple [F]

\[\int \frac {{\left (a +b \left (c \,x^{q}\right )^{n}\right )}^{p}}{x^{2}}d x\]

[In]

int((a+b*(c*x^q)^n)^p/x^2,x)

[Out]

int((a+b*(c*x^q)^n)^p/x^2,x)

Fricas [F]

\[ \int \frac {\left (a+b \left (c x^q\right )^n\right )^p}{x^2} \, dx=\int { \frac {{\left (\left (c x^{q}\right )^{n} b + a\right )}^{p}}{x^{2}} \,d x } \]

[In]

integrate((a+b*(c*x^q)^n)^p/x^2,x, algorithm="fricas")

[Out]

integral(((c*x^q)^n*b + a)^p/x^2, x)

Sympy [F]

\[ \int \frac {\left (a+b \left (c x^q\right )^n\right )^p}{x^2} \, dx=\int \frac {\left (a + b \left (c x^{q}\right )^{n}\right )^{p}}{x^{2}}\, dx \]

[In]

integrate((a+b*(c*x**q)**n)**p/x**2,x)

[Out]

Integral((a + b*(c*x**q)**n)**p/x**2, x)

Maxima [F]

\[ \int \frac {\left (a+b \left (c x^q\right )^n\right )^p}{x^2} \, dx=\int { \frac {{\left (\left (c x^{q}\right )^{n} b + a\right )}^{p}}{x^{2}} \,d x } \]

[In]

integrate((a+b*(c*x^q)^n)^p/x^2,x, algorithm="maxima")

[Out]

integrate(((c*x^q)^n*b + a)^p/x^2, x)

Giac [F]

\[ \int \frac {\left (a+b \left (c x^q\right )^n\right )^p}{x^2} \, dx=\int { \frac {{\left (\left (c x^{q}\right )^{n} b + a\right )}^{p}}{x^{2}} \,d x } \]

[In]

integrate((a+b*(c*x^q)^n)^p/x^2,x, algorithm="giac")

[Out]

integrate(((c*x^q)^n*b + a)^p/x^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+b \left (c x^q\right )^n\right )^p}{x^2} \, dx=\int \frac {{\left (a+b\,{\left (c\,x^q\right )}^n\right )}^p}{x^2} \,d x \]

[In]

int((a + b*(c*x^q)^n)^p/x^2,x)

[Out]

int((a + b*(c*x^q)^n)^p/x^2, x)